
Terahertz-sideband spectra involving Kapteyn series

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2009 J. Phys. A: Math. Theor. 42 365206

(http://iopscience.iop.org/1751-8121/42/36/365206)

Download details:

IP Address: 171.66.16.155

The article was downloaded on 03/06/2010 at 08:07

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/42/36
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 42 (2009) 365206 (9pp) doi:10.1088/1751-8113/42/36/365206

Terahertz-sideband spectra involving Kapteyn series

Ian Lerche1, Robert C Tautz2 and D S Citrin3,4

1 Institut für Geowissenschaften, Naturwissenschaftliche Fakultät III, Martin-Luther-Universität,
D-06099, Germany
2 Institut für Theoretische Physik, Lehrstuhl IV: Weltraum- und Astrophysik, Ruhr-Universität
Bochum, D-44780 Bochum, Germany
3 School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta,
GA 30332-0250, USA
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Abstract

Kapteyn series of the second kind appear in models of even- and odd-order
sideband spectra in the optical regime of a quantum system modulated by a
high-frequency (e.g., terahertz) electromagnetic field (Citrin D S 1999 Phys.
Rev. B 60 5659) and in certain time-periodic transport problems in superlattices
(Ignatov A A and Romanov Y A 1976 Phys. Status Solidi b 73 327; Feise M W
and Citrin D S 1999 Appl. Phys. Lett. 75 3536). This paper shows that both the
even- and the odd-order Kapteyn series that appear can be summed in closed
form, thereby allowing more transparent insight into the structural dependence
of the sideband spectra and also providing an analytic control for the accuracy
of numerical procedures designed to evaluate the series. The general method of
analysis may also be of interest for other Kapteyn series.

PACS numbers: 02.30.Gp, 42.65.Ky, 78.67.De

1. Introduction

In discussing an optical analogue for phase-sensitive measurements in quantum transport
through a quantum dot whose energy levels are modulated periodically in time, Citrin (1999)
has considered optical propagation of a monochromatic optical beam at frequency ω (known as
the fundamental frequency) transmitted through or reflected from a quantum well modulated by
a high-frequency field (henceforth called the terahertz field) at frequency �. The transmitted
and reflected optical beams are shown to contain new frequencies ω + p�, where p is an integer,
known as terahertz sidebands (Citrin 1999). The amplitude of such signals as a function of
ω is known as terahertz sideband spectra. In the case when only one modulated energy
level (at time-averaged energy ε0) is relevant and the periodic modulation of that energy level
is sinusoidal, a simple and useful model can be obtained that permits considerable analytic
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progress to be made before numerical methods need to be brought to bear on the problem. Such
a model then permits one to study in a straightforward fashion how the terahertz sidebands
scale with various parameters such as � and the modulation strength (the degree to which the
energy level varies with respect to its time average ε0).

A formally similar analytic model also arises in connection with miniband transport in
a superlattice subjected to a strong terahertz field (Ignatov and Romanov 1976, Feise and
Citrin 1999). The phases of the reflected and transmitted complex electromagnetic amplitudes
for each sideband (with respect to the initial optical beam at angular frequency ω) provide
information on the quantum system. The detailed development given by Citrin (1999) has its
basic underpinning from the calculation of the amplitude of the transmitted optical electric
field, T (ω′, ω), at frequency ω′. Equation (2) of Citrin (1999) provides

T (ω′, ω) = 2π

ζ

[
ω − ε0

ω − ε′
0

δω′,ω + Kp(ω)δω′−ω.pζ

]
(1)

with

Kp(ω) = 2i	
 e−ipαS, (2)

where

S =
∞∑

k=1

′ 1


2 − (kζ/2)2
J(k+p)/2 (kε1/(2
)) J(k−p)/2 (kε1/(2
)) . (3)

The series S is the Kapteyn series of the second kind of interest here. In general, there
are two kinds of Kapteyn series (Kapteyn 1893). Kapteyn series of the first kind involve
summations over terms containing one Bessel function of the form Jn(nx), while Kapteyn
series of the second kind involve terms each of which is proportional to a product of two
such Bessel functions. Note that the index of summation k appears both in the order and the
argument of the Bessel functions. The notation in equations (1)–(3) is that given by Citrin
(1999). In particular, the prime on the summation indicates that only terms where the parity
of k is that of p are retained and 
 = ω − μζ/2 − ε0 is the (sideband order μ-dependent)
detuning between the average energy ω − μζ/2 of the fundamental and relevant sideband and
the time-average energy of the modulated level ε0. The first term in equation (1) gives the
transmitted beam at the input frequency ω′ = ω in the absence of the modulation field, while
the second contains the terahertz sidebands at ω′ = ω + pζ . The cardinal point for this paper
is the requirement that the sum in equation (3) is the sum over integers with the same parity
as p. Thus if p = 2n (n = 0, 1, 2, . . . ), then k = 2r (r = 0, 1, 2, . . . ), while if p = 2n + 1, then
k = 2r + 1 (r = 0, 1, 2, . . . ). Note that due to the form of equation (3), there is no need to
consider negative values of p.

Citrin (1999) notes that by expanding equation (3) in powers of (ε1/ζ
1/2) one can

identify the various multi-photon processes contributing to each sideband, and he provides the
appropriate expansion. Numerical evaluation at this stage is required and has the consequence
that convergence of an infinite product inside an infinite sum must be proven, a less than trivial
task.

The purpose of this paper is to show that the Kapteyn series represented in equation (3)
can indeed be summed in a closed form, thereby facilitating not only the general understanding
of the sideband spectra but also obviating the need to prove convergence of an infinite product
inside an infinite sum—a serendipitous result that is definitely a welcome blessing. Moreover,
the closed-form expressions found as well as the approach by which they are obtained are
likely to be of interest for other areas of physics and applied mathematics.
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2. Evaluation of the Kapteyn series

For p = 2n (and so k = 2r), i.e. for the even-order sideband spectra, one has to evaluate

SE(n) =
∞∑

r=1

1


2 − (rζ )2
Jr+n(ar)Jr−n(ar) (4)

with a = ε1/(2
), for all nonnegative integers n.
For p = 2n + 1 (n = 0, 1, 2, . . . ) and so k = 2r + 1 (r = 0, 1, 2, . . . ), i.e. for the odd-order

side spectra, one has to evaluate

SO(n) =
∞∑

r=0

1


2 − (
r + 1

2

)2
ζ 2

Jr+n+1

(
a

(
r +

1

2

))
Jr−n

(
a

(
r +

1

2

))
(5)

with a = ε1/(2
), for all integers n including n = 0.
It is the closed-form evaluation of the Kapteyn series SE(n) and SO(n) that is of concern

here. Thus, equations (4) and (5) may be regarded as the starting point of our study.

2.1. The even-order side spectra summation

Consider first the even-order sideband spectrum summation written in the form

SE(n) = −(1/ζ )2 KE(a, b) (6)

with

KE(a, b) =
∞∑

r=1

1

r2 − b2
Jr+n (ar) Jr−n (ar) (7)

and b = 
/ζ . Closed-form evaluation of KE(a, b) proceeds as follows. From Watson (1965,
equation (1) in Section 5.43 on page 150), one has

Jμ(z)Jν(z) = 2

π

∫ π/2

0
Jμ+ν(2z cos θ) cos((μ − ν)θ) dθ, (8)

which is valid in general when μ and ν are arbitrary integers, and is otherwise valid so long
as Re(μ + ν) > −1.

One also has Jr-n(ar) = (−1)r−n Jn−r(ar). Thus, with μ = n + r, ν = n − r and z = ar, it
follows that

Jn+r (z)Jr−n(z) = (−1)r−n 2

π

∫ π/2

0
J2n(2ar cos θ) cos(2rθ) dθ. (9)

Now use the representation

J2n(x) = 2

π

∫ π/2

0
cos(x sin θ) cos(2nθ) dθ (10)

in equation (9) and substitute the result into equation (7) to obtain

KE(a, b) = (−1)n
(

2

π

)2 ∫ π/2

0
cos(2nψ) dψ

∫ π/2

0
A dθ (11)

with

A =
∞∑

r=1

(−1)r

r2 − b2
cos(2rθ) cos(2ar cos θ sin ψ). (12)
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Use the fact (Gradshteyn and Ryzhik 2000, equation (FI III 545) in section 1.445 on page 47)
that

∞∑
r=1

(−1)r

r2 − b2
cos(rf ) = 1

2b2
− π

2b
csc(πb) cos(bf ) (13)

valid in the range −π � f � π . In fact, as is readily obtained from equation (13), one shows
that

∞∑
r=1

(−1)r

r2 − b2
cos(rf ) cos(rg) = 1

2b2
− π

2b
csc(πb) cos(bf ) cos(bg), (14)

which holds for f, g ∈ [−π, π ]. Consequently, we obtain

KE(a, b) = −(−1)n
2

π
csc(πb)

1

b

∫ π/2

0
cos(2nψ) dψ

×
∫ π/2

0
cos(2bθ) cos(2ab cos θ sin ψ) dθ. (15)

Care must be taken that the relevant ranges of the cosine arguments in equation (15)
lie in the appropriate range of modulo (2π ) to ensure that one handles the integrals in the
correct domain. The bookkeeping associated with values of the cosine arguments outside the
range (0, 2π ) is cumbersome but the general sense of evaluation of the double integral in
equation (15) remains unaltered. For ease of exposition here we treat solely the case where
the cosine arguments are restricted to the range (0, 2π ); all other ranges can be dealt with
accordingly, mutatis mutandis.

There is also a slight restriction on the argument b. As Citrin (1999) has noted, neglect
of any imaginary component of b allows one to obtain an optical theorem (Newton 1976). To
the same extent, neglect of the imaginary part of b in equation (15) is equally justified. Then
use equation (10) to write

KE(a, b) = −(−1)n
2

π
csc(πb)

1

b

∫ π/2

0
cos(2bθ)Jn(2ab cos θ) dθ. (16)

Again use equation (8) with μ − ν = 2b and μ + ν = 2n to obtain

KE(a, b) = −(−1)n
π

2b
csc(πb)Jn+b(ab)Jn−b(ab), (17)

which is the summation required and is valid for n, an integer and n � 1, with 0 < a < 1, 0 <

b < 1.
Outside of these ranges for a and b one must proceed with the evaluation using

the argument given above for validation of the cosine integrals with considerably more
bookkeeping as a and b increase systematically. In principle, there is no difficulty in completing
the evaluations because the method is precise as given above, but the resulting expressions
become increasingly unwieldy compared to equation (17).

2.2. The odd-order side spectra summation

Consider equation (5) written in the form

SO(n) = −(1/ζ )2KO(a, b) (18)

with

KO(a, b) =
∞∑

r=0

(−1)n−r

(
r + 1

2

)2 − b2
Jn+r+1

(
a

(
r +

1

2

))
Jn−r

(
a

(
r +

1

2

))
. (19)
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By a procedure similar to that followed for the even-order series, one replaces the
product of the Bessel functions in equation (19) by an integral over one Bessel function using
equation (8), then one replaces the single Bessel function occurring under the integral by

J2n+1

(
a

(
r +

1

2

)
cos θ

)
= 2

π

∫ π/2

0
sin((2n + 1)ψ) sin

(
a

(
r +

1

2

)
cos θ sin ψ

)
dψ, (20)

and finally one performs the summation over r from r = 0 to ∞. Then the reversal of the
integral representations is undertaken, just as for the even-order spectra, with the result that
one finds

2KO(a, b) = (−1)n(π/2)b−1 sec(πb) Jn+1/2+b(ab)Jn+1/2−b(ab), (21)

which is the summation sought, and is valid in 0 < b < 1/2 and 0 < a < 1. For values of
a and b outside these ranges one has to ensure that the arguments of the various cosine and
sine terms in the relevant integrals lie in the appropriate ranges—just as is required for the
even-order series.

It is noteworthy that the forms of the results for both the even- and odd-order sideband
spectra are similar. It is also immediately evident that the given sideband spectrum will vanish
if ab is chosen such that it is a zero of the relevant Bessel function.

Fortunately, as Citrin (1999) has discussed, the parameter b is directly proportional to the
detuning frequency and so is considered in some sense as small; this smallness allowed Citrin
(1999) to expand the Kapteyn sums in ascending powers of b.

The suggestion then is that b � 1 so that there will be little need to include the higher
argument ranges. However, the evaluation of the Kapteyn series for such higher range values
for a and b is not complicated, rather fraught with bookkeeping and so is tedious. For this
reason only the outline of the procedure has been given here for such ranges. For the ranges
most appropriate for the quantum optics and transport experiments discussed by Citrin (1999),
the closed-form detailed evaluations have been given here of the even- and odd-order Kapteyn
series.

3. Numerical comparison

To illustrate the degree of agreement between the analytical closed-form solutions and the
direct evaluation of the Kapteyn series summations within the ranges chosen, this section
provides a few illuminating cases for both the even- and the odd-order summations.

3.1. Even-order numerical results

Start with the even-order representations. As shown in figure 1 for the case of n = 1,
b = 0.5, the agreement between direct computation of the value of KE from the series
(solid) and the analytic closed-form expression for KE (dashed) is so close that there is no
discernable difference between the two curves when plotted as a function of the parameter a in
a < 1, as is evident also from the inset, which shows the relative deviation between the two
curves.

Consider now the value of KE at a fixed parameter value a = π/6 as the parameter b
varies, again for n = 1, the lowest even-order sideband, in figure 2. The inset clearly shows
that there is no discernable difference between the series and the closed-form expression for
b < 1. Indeed, the inset indicates an accuracy of about a part in 1016 throughout most of the
range of b < 1 and even at b = 1 the inaccuracy is still only a part in 1014, thus showing the
appropriateness of the closed-form analytic expression.
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Figure 1. Comparison of the direct series evaluation (solid) and the analytic representation (dashed)
for the even-order spectra KE (a, b) with n = 1, b = 0.5 as a is varied. The inset shows the relative
difference between the direct series evaluation and the analytic representation.

Figure 2. Comparison of the direct series evaluation (solid) and the analytic representation (dashed)
for the even-order spectra KE with n = 1, a = π/6 as b is varied. The inset shows the relative
difference between the direct series evaluation and the analytic representation.

Figure 3. Comparison between the direct series evaluation (solid) and the analytic representation
(dashed) for the even-order spectra KE with n = 3, b = 0.95 as a is varied. The inset shows the
relative difference between the direct series evaluation and the analytic representation.
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Figure 4. Comparison of the direct series evaluation (solid) and the analytic representation (dashed)
for the odd-order spectra KO with n = 1, b = 0.25 as a is varied. The inset shows the relative
difference between the direct series evaluation and the analytic representation.

Many other values of n have been checked and all curves show marked agreement. For
instance, the case of n = 3, shown in figure 3, indicates no discernable difference between the
analytic and series representations in the range a < 1, for b = 0.95. As seen in the inset, the
mismatch is around a part in 1016 throughout most of the range of b and increasing only to
about a part in 102 at the end of the range b = 1.

3.2. Odd-order numerical results

Similar to the even-order spectra, here we present some illustrative examples of the odd-order
spectra results for direct summation of the series in comparison to the analytical results.
Figure 4 shows the behaviour of KO as a function of the parameter a for n = 1 and b = 0.25.
Note that while the analytic result is justified for a < 1/2 and b < 0.5, the numerical evaluation
shows that there is a high degree of overlap beyond the limit for a. Indeed, from figure 4
one sees that the two results are in agreement to about a = 0.9—perhaps indicative of the
larger domain of correctness of the analytic result than is derivable from the arguments given
above.

This point can be further extended by considering the case of n = 0 and b = 0.95, as
shown in figure 5—well beyond the range—where analytic justification can be given without
inclusion of the additional terms arising from the arduous bookkeeping. Note that as a function
of a, there is virtually no difference between the direct series evaluation and the analytic results
for the odd-order KO as far as a = 1. This point is further underscored by the inset where
agreement to better than a part in 1010 is obtained for a < 0.5 and, even at a = 1, the
disagreement is still only about a part in 102. Rugged stability is again seen.

Considering the variation of KO as a function of the parameter b for fixed values of a
(exhibited in figure 6 is the case of a = 0.2 and n = 1, although all other cases yield similar
results) one sees that there is almost perfect agreement to b = 0.5 and the relative degree of
mismatch shown in the inset indicates agreement to better than a part in about 1015 throughout
this range of b.

In short, the analytic evaluations of both the even- and odd-order spectra presented are
numerically accurate outside of the ranges where one needs to include extra terms from the
phase variation of the various cosine and sine factors appearing under the integral signs. To
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Figure 5. Comparison of the direct series evaluation (solid) and the analytic representation (dashed)
for the odd-order spectra KO with n = 0, b = 0.95 as a is varied. The inset shows the relative
difference between the direct series evaluation and the analytic representation.

Figure 6. Comparison of the direct series evaluation (solid) and the analytic representation (dashed)
for the odd-order spectra KO with n = 0, b = 0.95 as the parameter b is varied. The inset shows
the relative difference between the direct series evaluation and the analytic representation.

what extent this general pattern persists for all n, a, and b values is not known at the present
time but is likely worth exploring at some point in future.

4. Discussion and conclusion

In Feise and Citrin (1999) the approximate vanishing of the transport at zeros of the Bessel
functions was noted based on the approximate formula. Here, we see that this result is exact in
the model. If there is loss (b complex), one can also find ab (for a real) that are (complex) zeros
of the relevant Bessel functions, but then the index of the Bessel functions is also complex so
that one would have to work through the problem de novo allowing for a complex value of b
from the onset. This is, regrettably, necessary in order to take into account the complex values
of b in summing the series to obtain analytic representations. However, it is also possible to
obtain the approximate representation of such values because one notes that the original series
are even functions of b, whether b is real or complex. As such the series are meromorphic
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functions of b and so can be analytically continued into the complex plane. Such a detailed
investigation is beyond the scope of the present paper, but the point is noted here for future
investigation.

It is also opportune to note here that the infinite product representation given by Citrin
(1999) (obtained by the expansion of the infinite Kapteyn series in powers of b) enables one
to obtain simply useful expressions for the infinite products by the expansion of the analytic
results presented for the even- and odd-order series also in powers of b. Such a development
is a bit trickier than it appears at first glance because of the presence of the parameter b in both
the order and argument of the analytic representations of the series but poses no fundamental
difficulties in principle. Such a development would, however, make for a very long paper
indeed and so is deferred to the future.

Perhaps one of the most interesting points to be made is that the Kapteyn series arising in
the sideband spectra can be given in closed form, enabling more insight to be gained into the
response of such quantum systems, as illustrated by the vanishing of the sideband spectrum
at selected values of ab. The other point to make is that the ability to produce closed-form
expressions for the Kapteyn series is of considerable benefit when one attempts to perform
numerical computations because such closed-form expressions act as strong controls on the
accuracy determination of any numerical scheme. In addition, the general procedure for
summing such Kapteyn series may be of use in other problems where similar Kapteyn series
arise.
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